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Nonlinear dynamics of higher-order solitons near the oscillatory instability threshold
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Nonlinear theory describing the dynamics of solitons in the vicinity of oscillatory instability threshold with
a low frequency offset is developed. The theory is tested on the example of parametric degenerate four-wave
mixing. All major predictions of our theory are in agreement with the results of direct numerical modeling.
This includes the position of oscillatory instability threshold, instability rates, and various instability develop-
ment scenarios.
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I. INTRODUCTION

Among the most fascinating objects of nonlinear scien
are solitons—self-guided beams and pulses. One of the
sons for the current interest in optical solitons is due to
possibility of all-optical switching and controlling light b
light ~see, e.g.,@1#!. Continuous growth of theoretical know
edge for existence, effective generation, and stability of
ferent types of solitary waves is backed by a variety of s
cessful experiments@2#.

Stability of solitons is one of the paramount questio
~see e.g.,@3# and references therein!. The majority of theo-
retical results related to the dynamics of solitary waves w
obtained vialinear spectral stability analysis. This describ
well only the initial stages of perturbed soliton evolution a
leaves unresolved its subsequent dynamical behavior. Du
the last decade several model equations, like general
nonlinear Schro¨dinger equation~NLS! @4,5# and three-wave
mixing @6,7#, were used to develop theory describing long
term nonlinear dynamics of solitons near the Vakhitov
Kolokolov ~VK ! instability threshold@8#. This theory suc-
cessfully explains persistent oscillations, decay and colla
of the solitary waves, and transitions between these scen
@4#. VK instability being a particular example of the instab
ity generated by purely real eigenvalues in the soliton sp
trum, is a typical first instability for the fundamental~node-
less! solitary solution.

Higher-order~excited-state! solutions are also of signifi
cant fundamental and practical interest. Recently, wide in
est in such solitons has been aroused by the discover
several classes of stable higher-order solitons in differ
nonlinear media@9,10#. The most typical scenario of insta
bility of the higher-order states is, however, instability due
complex eigenvalues. One of the first examples of comp
eigenvalues in the linear spectrum of a Hamiltonian sys
is associated with the antisymmetric mode of nonlinear p
nar waveguide, Refs.@11#. For more recent examples of o
cillatory instability see Refs.@12#. Analytical treatment of
1063-651X/2001/64~5!/056612~11!/$20.00 64 0566
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such instabilities is much more involved and one of the fi
steps in this direction was made in@13#, where the genera
linear asymptotic stability analysis capable of capturi
complex eigenvalues has been developed, but has not
backed up with any physical example. The approach use
@13# is based on the assumption that oscillatory and VK
stabilities happen sufficiently close to each other~in the vi-
cinity of the codimension two pointwhere four correspond
ing eigenvalues merge at zero and the govern
eigenvectors coincide!. On the other hand, recent numeric
studies of the spectral properties of the optical solitons
generate four-wave mixing~FWM! @10# have revealed the
existence of exactly such a point for one of the higher-or
soliton families, suggesting that this situation may be mu
more typical for complex nonlinear evolutional models th
previously thought. The goal of this work is a detailed stu
of this FWM example and nonlinear generalization of t
linear theory of Ref.@13#. We derive a nonlinear ordinary
differential equation~ODE! model that provides a valuabl
insight into longer-term instability-induced dynamics
higher-order solitons allowing us to classify different inst
bility development scenarios. All major predictions of o
analytic results are in full agreement with direct numeric
simulations.

II. DEGENERATE FOUR-WAVE MIXING MODEL

We intend to demonstrate all major steps of the derivat
of our nonlinear dynamics theory in the example of a spec
physical model representing a degenerate case of param
FWM in the presence of self- and cross-phase modulat
The equations for this model are
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where nonparametric nonlinear terms are expressed by f
tions N15(uUu2/912uWu2)U, N25(9uWu212uUu2)W,
slowly varying complex functionsU andW are amplitudes of
the fundamental and the third harmonics, respectively,
parameterb measures the shift in the propagation consta
D is the wave-vector mismatch, andZ is the propagation
distance. For the spatial soliton case the dimensionless
rameters is the ratio of the wave numbers of the harmon
and is equal to 3 whereas for the case of the temporal so
the value ofs can vary. Some special sech-like solitons
this model were found in Refs.@14# whereas the question o
families of two-wave solitons was addressed in Refs.@15#.
The key property of this model is that it admits the existen
of a broad range of different higher-order soliton famili
including stable, unstable, and oscillatory unstable ones@10#.

Equations~1! have three integrals of motion, hamiltonia
energy, and momentum, of which HamiltonianH and energy
Q are important for our analysis. These invariants are gi
by

H5E
2`

1` H U]U

]XU2

1U]W

]XU2

2
1

18
uUu42

9

2
uWu422uUu2uWu2

2
1

9
~WU* 31W* U3!1sDuWu2J dX,

~2!

Q5E
2`

1`

$uUu213suWu2%dX.

To present and classify soliton families we use invariants~2!
calculated for soliton profiles. Figure 1 shows the dep
dence of energyQ versus soliton parameterb at D51.0 and
s52.5. Corresponding parametric dependenceH5H(Q) is
presented in Fig. 2. Examples of the representatives of
lowest-order two-wave soliton families are given in Fig.

FIG. 1. Soliton families of Eqs.~1! at s52.5. Dashed curve
corresponds to the one-wave family (U50, WÞ0); solid curves
represent two-wave soliton families. PointB shows the position of
the bifurcation of two-wave soliton families from the one-wa
family separated by a turning pointT. Insert shows the vicinity of
stability window bounded by VK instability~point V) and oscilla-
tory instability ~point O) thresholds.
05661
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Note, that for anyD.0 the corresponding diagrams may b
easily obtained by an appropriate scaling transformation.

The analysis of Ref.@10# identified that fundamental two
wave soliton family~the lowest inH-Q diagram, which goes
up to a pointT in Figs. 1 and 2! is always stable in the whole
domain of existence~for any fixedD.0 ands.3). At the
turning pointT solitons lose their stability and the emergin
higher-order soliton family is unstable until VK stabilit
threshold~point V), where surprisingly it does not acquir
the second instability mode, butregainsstability in a small
range of the parameterb, before losing it again due to oscil
latory instability~point O). Varyings one can find the codi-
mension two point, where the stability window exactly va
ishes, the eigenvectors driving both instabilities coinci
and all formal conditions for the theory presented below

FIG. 2. Hamiltonian versus energy diagram for the soliton fam
lies of Eqs.~1!. All labeling and notations correspond to the labe
ing and notations in Fig. 1.

FIG. 3. Examples of soliton profiles at energy levelQ510. The
profiles shown in plots (a), (b), and ~c! correspond to the points
L,M , andN in Figs. 1 and 2. Figure (d) is enlarged fragment of the
plot (c). Note nonmonotonic soliton tails — a distinctive feature of
higher-order solitons.
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satisfied exactly (sc253.04, bc250.2692). We note, how-
ever, that our approach works quite well even whens is
chosen relatively far fromsc2 and codimension two poin
conditions are only roughly satisfied.

III. DERIVATION OF THE NONLINEAR ASYMPTOTIC
MODEL: INVARIANT-BASED APPROACH

There are two known methods for derivation of the no
linear dynamical model:~i! direct asymptotic approac
@6,13# and (i i ) invariant-based asymptotic approach that
volves series expansion of some integral of motion of
analyzed system@4,7#. There is currently some confusion i
literature due the fact that so far no comparison has b
done between these two procedures. We clarify the situa
and demonstrate the complete equivalence between t
methods. We show that the first approach makes calcula
of linear terms relatively straightforward but computing
nonlinear terms rather complex. In contrast, the invaria
based asymptotic approach allows nonlinear terms to be
tained directly as a result of a Taylor expansion of so
conserved quantity of the governing equations. A burd
some part in the implementation of this method is the cal
lation of certain linear terms. In the next section we use
invariant-based method while an outline of the asympto
method~which we also use to check our results! is given in
Appendix B.

We assume that close to the stability threshold evolut
of the soliton parameterb is slow ~adiabatic! in Z. This
allows us to look for localized solutions of Eqs.~1! in the
form of the asymptotic series,

Up~X,Z!5Us@X,b~z!#1 (
n51

1`

«nUn~X,z!,

~3!

Wp~X,Z!5Ws@X,b~z!#1 (
n51

1`

«nWn~X,z!,

where the parameter« measures smallness of deviation fro
a stationary soliton (Us ,Ws) andz5«Z. We are looking for
a nonstationary, but localized solution of Eqs.~1! and thus
consider only localized functionsUn ,Wn . Below we often
refer to this nonstationary asymptotic solution asperturbed
soliton (Up ,Wp).

The substitution of series~3! into the system~1! allows us
to calculate consequent orders of (Up ,Wp) in an algorithmic
procedure.

Denoting all nonderivative terms of Eqs.~1! as,

F1~U,W,U* ,W* ![2bU1S 1

9
uUu212uWu2DU1

1

3
U* 2W,

~4!
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F2~U,W,U* ,W* ![2s~3b1D!W

1~9uWu212uUu2!W1
1

9
U3,

we define two linear operatorsL̂ I and L̂R ,

L̂R[S ]2

]X2
1

]F1

]W
1

]F1

]W*

]F1

]W
1

]F1

]W*

]F2

]U
1

]F2

]U*

]2

]X2
1

]F2

]W
1

]F2

]W*

D ,

L̂ I[S ]2

]X2
1

]F1

]U
2

]F1

]U*

]F1

]W
2

]F1

]W*

]F2

]U
2

]F2

]U*

]2

]X2
1

]F2

]W
2

]F2

]W*

D ,

where all partial derivatives are calculated at (Us ,Ws). For
the case of Hamiltonian system~1!, operatorsL̂ I and L̂R are
self-adjoint. Now we are able to present major results of
asymptotic approach in a reasonably compact form.

Substitution of the series~3! into system~1! and collec-
tion of the terms of the zero order in« simply allows us to
obtain the system of nonlinear ordinary differential equatio
for stationary solitons (Us ,Ws). The first-order terms are
given by a solution of the following system oflinear inho-
mogeneous differential equations,

L̂ I S U1

W1
D 52 i ḃS Usb

sWsb
D , ~5!

where subscriptb stands for the derivative with respect tob.
System~5! has a localized solution only if its right-hand sid
is orthogonal to all localized solutions of the correspond
homogeneous system. In particular, it should be orthogo
to the even neutral mode of operatorL̂ I that is given by
(Us,3Ws). This orthogonality condition leads to the wel
known VK criterion@8#, which may be used to find stability
threshold point~s! at bVK .

Presenting the first-order terms in the form

S U1

W1
D 5 i ḃS U11

W11
D , ~6!

we proceed to the second-order of our asymptotic appro
calculating the second order correction (U2 ,W2), defined by
L̂RS U2

W2
D 5b̈S U11

sW11
D 1ḃ2S ]U11/]b

s]W11/]b D 2ḃ2S U11
2 ~Us/92Ws/3!12UsU1W11/312UsW11

2

U11
2 ~2Ws2Us/3!19WsW11

2 D . ~7!
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The second-order terms (U2 ,W2) do not impose any non
trivial compatibility conditions and may be presented in t
form

S U2

W2
D 5ḃ2S U21

W21
D 1b̈S U22

W22
D . ~8!

Proceeding further in a similar way we obtain the followin
form for the third-order approximation,

S U3

W3
D 5 i ḃ3S U31

W31
D 1 i ḃb̈S U32

W32
D 1 i b̂S U33

W33
D , ~9!
l

u-

li-
-

en

05661
where terms (U3i ,W3i), i 51,2,3 are solutions of some in

homogeneous differential equations involving operatorL̂ I

~see Appendix A!. As all other odd order terms, the third
order correction (U3 ,W3) impose some nontrivial orthogo
nality conditions, which we assume to be approximately s
isfied.~These conditions in fact require that codimension t
point is close enough in the corresponding parameter spa!
The terms of the fourth and higher order may be calcula
in a similar way, but are not essential for the invariant-bas
approach used here. Thus we truncate the expression fo
adiabatically evolving localized soliton as
S Up

Wp
D 5S Us

Ws
D 1 i«ḃS U11

W11
D 1«2ḃ2S U21

W21
D 1«2b̈S U22

W22
D 1 i«3F ḃ3S U31

W31
D 12ḃb̈S U32

W32
D 1b̂S U33

W33
D G . ~10!
ex-
As the next step we construct the Lyapunov functionaL
5H1bQ, where HamiltonianH and energyQ are given by
expressions~2!.

Substituting the series~3! into the functionalL and keep-
ing terms up to the fourth order in« we obtain

L5Hp1bQp

5Hs1bQs1«2
1

2
D1ḃ2

1«4F1

2
D2~2ḃ b̂2b̈2!1ḃ4A1ḃ2b̈BG , ~11!

where Hp ,Qp stand for the values of the invariants calc
lated for the perturbed~nonstationary! asymptotic solution
~10!, Hs,Qs are invariants calculated for the stationary so
ton solutions (Us ,Ws), coefficientsDi have the same defini
tions as in@13#:

D1~b!522^~U11,W11!uL̂ I~U11,W11!&,

D2~b!522^~U33,W33!uL̂ I~U11,W11!&

52^~U22,W22!uL̂R~U22,W22!&, ~12!

where^UuW&[( i*dXUiWi* . The coefficientsA and B are
also given by similar overlap integrals, but we do not pres
their specific structure here.

To simplify the expression~11! we introduce the variable
db[b2b0, where soliton parameterb0 is given by the
equationQs(b0)5Qp . To go further we define two more
coefficients

D0~b0!5
]Q

]b Ub0
, g~b0!5

1

2

]2Q

]b2U
b0

. ~13!
t

In the vicinity of codimension two bifurcation the following
assumptions for coefficientsDi are essential:D05«4D̃0 ,
D15«2D̃1 , Di>2;O(1), ~see Ref.@13#!. Assuming that
db5«4db̃, expanding all functionals inL in the Taylor se-
ries aroundb0, and keeping terms up to the«12 we obtain

Hp5H0~b0!1«12F1

2
D1dḃ21

1

2
D2~2dḃdb̂2db̈2!

1
1

2
D0db21

1

3
gdb3G , ~14!

where all tildes are omitted for brevity.
Introducing canonical variables (q1 ,q2 ,p1 ,p2)

q15db,

q252dḃ,
~15!

p15D2db̂1D1dḃ,

p25D2db̈,

we transform the function in the square brackets of the
pression~14! to the classical Hamiltonian form:

H̃52p1q22
1

2D2
p2

21
1

2
D0q1

21
1

3
gq1

32
1

2
D1q2

2 . ~16!

Dynamical equations for this system have the form

q̇152q2 ,

q̇252
1

D2
p2 ,

~17!
ṗ152D0q12gq1

2 ,
2-4
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ṗ25p11D1q2 .

After back substitution of the definitions~15!, the system of
equation~17! may be presented as

D2d b̈̈ 1D1db̈1D0db1gdb250. ~18!

Nonlinear ODE ~18! describes adiabatic evolution of th
soliton parameterb ([b01db) in the vicinity of the VK
and oscillatory instability thresholds. Due to local one-to-o
correspondence between the soliton solution and its inte
parameter, model~18! indirectly describes adiabatic evolu
tion of a weakly perturbed soliton.

An alternative derivation of Eq.~18! may be found in
Appendix B. The structure of equation~18! is generic for
Hamiltonian systems with phase-translational symmetry.
efficients D0 , D1 , and D2 measure orthogonality betwee
the corresponding symmetry-induced neutral mode and
turbations of the first lowest orders,g characterizes depen
dence of the corresponding conserved quantity~energy! from
the corresponding internal parameter. A linear version of
~18! was obtained in Ref.@13#. Among other major conclu-
sions that can be obtained from analysis of Eq.~18! is the
expression for the oscillatory instability threshold atbos that
is given implicitly by the equation

D1
224D0D250. ~19!

IV. ANALYSIS OF THE NONLINEAR EVOLUTION
MODEL

A. Calculation of the coefficients

Analysis of the nonlinear model starts from the calcu
tion of the coefficients in Eq.~18!. Computing of the coeffi-
cientsD0 andg is direct. Expressions for other coefficien
involve computation of different order terms in the series~3!.
In particular, calculation of the coefficientD1 ~which is often
referred to as amasscoefficient! includes numerical resolu
tion of the problem

L̂ I S U11

W11
D 52S Usb

sWsb
D . ~20!

The general solution of Eqs.~20! is a sum of the solution o
the corresponding homogeneous problem and the partic
solution of the inhomogeneous problem itself: (U11,W11)g
5(U11,W11)p1C(Us,3Ws), C is an arbitrary constant. Fo
our purposes we only need the (U11,W11)p part. In theoret-
ical consideration the contributionC(Us,3Ws) can be elimi-
nated by simply takingC50. However, numerical separa
tion of two parts~both of even symmetry! of the localized
solution (U11,W11)g may be a challenging task~singular
ODE problem!. This separation is necessary indeed, beca
the solvability condition for the calculation of the first-ord
terms in the series~10! only demands theapproximateor-
thogonality of (Usb ,Wsb) to the neutral mode of the opera
tor L̂ I , i.e., to (Us,3Ws), and thus any small deviation ofb0
from VK point bVK may lead to nontrivial and uncontro
lable contributions toD1 coefficient due toC(Us,3Ws) term.
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To expel this part from the general solution we use a hom
topy method. We introduce a continuous parameters and
construct a linear operator familyL̂(s)5sL̂I1(12s)L̂R .
The generalized problem~20! with operatorL̂ I replaced by
L̂(s) is singular only ats51, where even localized solutio
of the corresponding homogeneous problem exists. Num
cally this singularity manifests itself in a small vicinit
arounds51. Replacing the solution of the generalized inh
mogeneous problem in the singular region by the interpo
tion of the solutions from the neighboring regular regions
obtain (U11,W11)p at s51 with a high accuracy.

CoefficientD2 can be calculated in a standard~nonsingu-
lar! way provided the right-hand side of the E
L̂R(U22,W22)5(U11,sW11) is even inX and automatically
orthogonal to the neutral~zero eigenvalue! eigenmode
(]Us /]X,]Ws /]X) of operatorL̂R . Figure 4 represents re
sults of calculation of theDi , i 50,1,2 in the vicinity of VK
instability (D050) and oscillatory instability threshold
(D1

254D0D2) for two representative values ofs. Note that,
for our model,D1 ~mass coefficient! is negativein the vicin-
ity of VK and oscillatory instability thresholds ats;3.

B. Linear limit

To check accuracy of the asymptotic model~18! we cal-
culated the spectrum of the linearized~about stationary soli-
tons! version of system~1! in the vicinity of the stability
window. Strictly speaking, system~1! is Galilean invariant
only at s53.0 when instability development due to bifurc
tion from the antisymmetric neutral mod
(]Us /]X,]Ws /]X) is absent. We assume that this scena
of instability development is absent in the vicinity ofs53
and to avoid excessive difficulties related to smallness of

FIG. 4. DependenceD0 versusD1 ~dashed line! in the neigh-
borhood of stationary and oscillatory instability thresholds~solid
lines! plotted fors52.5, ~a!, ands52.8, ~b!.

FIG. 5. Size of the stability window versuss. Solid line corre-
sponds to the theoretical prediction of the model, the circles pre
the direct numerical results.
2-5
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stability window ~Fig. 5! choose a value of thes for which
the stability window is easily detectable.

The model~18! predicts the appearance of quadruplets
complex eigenvalues that are given by the following expr
sion:

l25
2D16AD1

224D0D2

2D2
. ~21!

The comparison between analytical result~21! and direct nu-
merical computations is presented in Fig. 6 for two cas
s52.5 ands52.8. Our theory correctly predicts both th
positions of the stability and oscillatory instability threshol
and the linear spectrum in the vicinity of these threshol
The agreement is better for the cases52.8 as then the maxi
mal deviation from the codimension two point (sc253.04,
bc250.2692) is smaller.

C. Stationary points

Coefficients in front of the nonlinear terms in the mod
~18! arise as a result of Taylor expansion of the energy fu
tional near the VK instability threshold. This expansion c
result in the inclusion of cubic and other higher-order c
rections into the final model~18!. Our analysis shows that i
is sufficient to include only the quadratic term. Physical
the condition for the truncation of this Taylor series is t
adequate description of major characteristic features of
complete nonlinear system. In the case of system~1! this
includes the number and type of soliton states achievable
some fixed soliton energyQp in the vicinity of bVK . Our
model ~18! with only the lowest-order nonlinear term co
rectly predicts the number of stationary points~correspond-
ing to stationary solitons! and their types. Figure 7 shows th
reason for this successful behavior demonstrating a ra
small deviation between actual dependence of energy inv
ant calculated on stationary soliton family and the parab
approximation employed in our model~18!.

D. Instability scenarios

Both the previous models~see Refs.@4,6#! and model~18!
yield similar predictions for the number and positions of t
stationary points for variation of the soliton paramet
namely,db50,2D0 /g. The advantage of our model is a

FIG. 6. Linear spectrum of Eq.~1! calculated fors52.5 ~a!, and
s52.8 ~b!. Solid curves and filled circles correspond to the posit
real part of the eigenvalue, dashed curves and open circles, to
imaginary part. All curves are given by the analytic expression~21!,
the circles represent the direct numerical results.
05661
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sociated with the increased dimensionality of the phase sp
of Eq. ~18! resulting in broader variety of spectral characte
istics and instability development scenarios.

Direct modeling of Eq.~18! is straightforward except for
certain difficulties associated with unbounded type of mot
demonstrated by this dynamical system.~Bounded trajecto-
ries exist only in the vicinity of the stable stationary points!
However, significant physical insight into the behavior of t
complete system~1! may be obtained from consideration o
the cross sections of the phase diagram corresponding to
four-dimensional phase space of the model~18!.

First, let us consider energyQp of the perturbed soliton
lying in the interval (Qvk ,Qos), whereQvk andQos are en-
ergies of stationary solitons at the VK and oscillatory ins
bility thresholds, respectively, Fig. 8~a!. In this case dynam-
ics of the system is determined by coexistence of the sad
center fixed pointb01 and the centerb f 1 that is presented
qualitatively in Fig. 8~c!. If an initial perturbation of the
stationary soliton withb01 is ‘‘positive,’’ i.e., bringsb to the

the

FIG. 7. Energy invariantQ @see Eq.~2!# calculated for the
higher-order soliton family of interest versus soliton parameteb
~solid curves! and its parabolic approximation~dashed curves! used
in the model~18!. Filled circles correspond to the instability thres
olds. ~a! for s52.5, ~b! for s52.8.

FIG. 8. Qualitative change due to increase of perturbat
strength. Left part:~a! smaller perturbation~lower level ofQp) of a
stationary soliton in the vicinity ofbVK leads to a phase diagram
cross section that includes center and saddle-center fixed point~c!.
Right part: ~b! larger perturbation~higher level ofQp) leads to a
phase diagram cross section that includes unstable spiral
saddle-center fixed points~d!. Solid circles stand for the instability
thresholds.
2-6
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right of b01, instability development leads to a rapid in
crease of soliton parameterb, similar to the regime 1 of Fig
3~b! of Ref. @4#. At the same time presence of an intern
mode in this region ofb can lead to simultaneous excitatio
of oscillations. This scenario persists for small ‘‘negative
initial perturbations, which bring initialb to the left ofb01.
This regime isdifferent from the regime 3 of Fig. 3~b! of
Ref. @4# due to presence of an extra degree of freedom in
model — we observemore than onelarge-scale oscillation
before rapid increase ofb. We note, that due to absence
collapse in system~1! and influence of nonlinear terms be
yond the approximation of the model~18! this rapid increase
of b evolves into decay~see Fig. 9!. In contrast, if an initial
negative perturbationdb puts the system closer to the stab
point b f 1 ~region II! the motion of the system becomes a
most periodic~see Fig. 10!. This regime is similar to the
regime 2 of Fig. 3~b! of Ref. @4#. The initial conditions taken
in a close vicinity of the stable pointb f 1 results in the phase
trajectory lying on the torus corresponding to the beating
two frequencies,~see Fig. 11!. There is no analog to this
behavior in any previous works.

Scenarios of instability development in the case when
ergy Qp of the perturbed soliton is greater thenQos are de-
fined by coexistence of the saddle-center pointb02 and of the
focusb f 2, Figure 8~b,d!. All observed regimes for this cas
have no analogs in previous works@4–7#. For small positive
deviation db from the parameterb02 ~region I! we again
have a few large-scale oscillations that after rapid increas
b evolve into decay of the soliton. If initial perturbationdb
forces transition of the system into a state in vicinity of t
focus b f 2 ~region III! initial evolution of the perturbation
undergoes oscillatory instability that usually develops in
decay~see Fig. 12!. However, a confined regime of solito
evolution is also possible for this case. This regime util
the fact that the stationary pointb02 may have center-type

FIG. 9. Unstable stationary soliton with small ‘‘negative’’ pe
turbation. Rapid increase of amplitude with oscillations resulting
decay.b50.2635,s52.8.

FIG. 10. Unstable stationary soliton with larger ‘‘negative’’ pe
turbation. Longer-term oscillations atb50.262, s52.5. Negative
initial db puts the system into region II in Fig. 8.
05661
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cross section and demonstrates a complex quasiperiodic
lution ~see Fig. 13!.

Note, that to check predictions of model~18!, we inte-
grated the system of partial differential equations~PDE!
starting from the differently perturbed stationary solitons
the vicinity of VK threshold. Perturbation was taken in th
form:

S DU

DWD 5aS Us

Ws
D 1bS ]2Us /]X2

]2Ws /]X2D 1cS ]4Us /]X4

]4Ws /]X4D
1dS ]6Us /]X6

]6Ws /]X6D , ~22!

wherea, b, c, andd define the perturbation.@We need four
coefficients to define the perturbation in order to span fo
dimensional phase space of Eq.~18!.# Other choices of four
perturbation functions are possible.

V. CONCLUSION AND DISCUSSION

In conclusion, we have developed a theory describ
longer-term nonlinear dynamics of perturbed higher-or
solitons in the vicinity of codimension two point. It wa
shown that for a large range of instability scenarios t
could not be analyzed in the frame of previously know
nonlinear models our theory successfully describes high
order soliton perturbation-induced dynamics. For the th
oughly investigated example of solitons due to degene
FWM our theory predicts correctly the linear spectrum
perturbation~instability threshold positions, instability rates!,

FIG. 11. Perturbed stable stationary soliton. Beating of two f
quencies, atb50.2619 ands52.8.

FIG. 12. Perturbed oscillatory unstable stationary soliton. Os
latory instability atb50.2667 ands52.8. (a),(b) initial stage;
~c!,~d! longer-scale behavior.
2-7
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and types of stationary points as well as various scenarios
longer-term soliton evolution. In general, we have comple
the missing link between codimension one point weakly n
linear approaches of Refs.@6,4# and codimension two poin
linear theory of Ref.@13#.

The two-fold derivation of the nonlinear model has de
onstrated complete equivalence between asymptotic
invariant-based approaches leading to two alternative in
pretations of the resulting coefficients. The structure of
nonlinear model suggests that our results may be readily
plied to other nonlinear models of different physical conte
In practice, our theory may be used to describe pertur
higher-order soliton dynamics~in, or close to, their stability
windows! if more conventional approaches fail in this regio
of system parameters.

FIG. 13. Perturbed oscillatory unstable stationary soliton. C
fined oscillatory instability atb50.25 ands52.5. Negative initial
db.
a
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The major difference between our model~18! and previ-
ously developed one-parameter soliton evolution model
in increased dimensionality of model phase space. In fact
~18! is a nonlinear Hamiltonian system with two degrees
freedom. Thus, it is almost certainly achaotic system@16#.
For the particular case of parameter values in Eq.~18! asso-
ciated with degenerate FWM solitons studied in this pa
chaotical motion characteristics are hard to analyze beca
the corresponding dynamical trajectories are typically u
bounded, but this can differ for other physical models wh
our theory is applicable. The challenge is to identify su
soliton systems.

Another interesting direction of further activity is in gen
eralization of our results to multi-parameter soliton syste
~e.g., with two or moreb-like parameters!. Promising candi-
dates for the corresponding physical example are not f
degenerate parametric four-wave-mixing models.
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APPENDIX A: THIRD-ORDER TERMS
FOR THE INVARIANT-BASED APPROACH

Components of the third-order approximation~9! can be
found from the following differential equations:

-

L̂ I S U31

W31
D 52S ]U21/]b1U1

3/92U1
2W1/312UsU21W1/3

s]W21/]b2U1
3/912UsU1U21/3

D 2S 2U1W1
212U1@U21~Us23Ws!26W21~Us26Ws!#/9

2U1
2W119W1

312W1~2UsU2119WsW21!
D ,

L̂ I S U32

W32
D 52S 2U211]U22/]b

2W211s]W22/]b D 2
2

3 S UsU22W11U1@U22~Us/32Ws!2UsW22#

UsU1U2213W1~2UsU2219WsW22!
D ,

L̂ I S U33

W33
D 52S U22

sW22
D .
ap-
to

rs
APPENDIX B: ASYMPTOTIC APPROACH

We assume that close to the stability threshold the ph
shift b varies adiabatically with distancez and the variation
of it db5b2b0 is small, whereb0 is taken in the vicinity
of VK stability threshold. We look for solutions in the form

U~X,Z!5u~X,z;b!ei«3E
0

z

db(t)dt,

W~X,Z!5w~X,z;b!e3i«3E
0

z

db(t)dt,

z5«Z, «!1, ~B1!

and obtain the following system of equations
se
]2u

]x2
1F1~u,w,u* ,w* !5«4dbu2 i«uz ,

~B2!

]2w

]x2
1F2~u,w,u* ,w* !53«4dbw2 i«swz,

whereF1 andF2 are given similar to Eq.~4! definitions.
There are two ways to proceed with the asymptotic

proach:~i! to add a pair of equations complex conjugate
the system~B2! and work with vectors (u,w,u* ,w* ) as in
Ref. @13#, (i i ) or to separate complex functions (u,w) into
real and imaginary parts and work with vecto
(uR ,wR ,uI ,wI). Below we adopted the second approach.
2-8
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We expand the solution to Eqs.~B2! into an asymptotic
series:

u5us1«4u41 i«5u51«6u61•••,
~B3!

w5ws1«4w41 i«5w51«6w61•••.

Here we already take into account the structure of Eqs.~B2!
explicitly omitting first three trivial~zero! orders. Also ats
53 the system~1! is Galilean invariant. As a result ats
53 the stability of stationary waves cannot be lost due
on

x

at
ro

on

05661
o

VK-like bifurcation from an antisymmetric neutral mod
(]us /]X,]ws /]X) of linear spectrum. We assume that th
property stays fors.3 and only consider perturbations b
longing to the class of symmetric functions. This assumpt
ensures that all consecutive even order corrections in se
~B3! are purely real, whereas all odd order corrections
purely imaginary. This, in turn, allows us to work wit
232 matrix operators, instead of 434 operators.

Linearization of functionsF1 ,F2 about real stationary so
lution (us ,ws) yields linear self-adjoint operatorsM̂ I and
M̂R,
M̂R5S ]2

]X2
1

]F1

]u
1

]F1

]u*

]F1

]w
1

]F1

]w*

]F2

]u
1

]F2

]u*

]2

]X2
1

]F2

]w
1

]F2

]w*

D ,

M̂ I5S ]2

]X2
1

]F1

]u
2

]F1

]u*

]F1

]w
2

]F1

]w*

]F2

]u
2

]F2

]u*

]2

]X2
1

]F2

]w
2

]F2

]w*

D ,
ial
d

or-
hat
sent
with all partial derivatives taken at stationary soliton soluti
(us ,ws) that is obtained in the zero order in«. The next,
three-order corrections are trivial~zero! as we have already
mentioned above. Solution of the next, fourth-order appro
mation is given by the system

M̂RS u4

w4
D 5dbS us

3sws
D , ~B4!

and may be found exactly as

S u4

w4
D 5dbS usb

wsb
D . ~B5!

Proceeding further we obtain

M̂ I S u5

w5
D 52dḃS usb

swsb
D . ~B6!

In this order we have the nontrivial solvability condition th
is approximately satisfied if the stationary soliton of ze
order approximation (us ,ws) is chosen in the vicinity of the
VK stability threshold. Presenting the fifth-order correcti
in the form

S u5

w5
D 5dḃS u51

w51
D , ~B7!
i-

-

we can proceed with the sixth-order correction,

M̂RS u6

w6
D 5db̈S u51

sw51
D , ~B8!

which we present in the form

S u6

w6
D 5db̈S u61

w61
D . ~B9!

Note that odd order corrections do not impose any nontriv
compatibility conditions. Next order terms may be foun
from

M̂ I S u7

w7
D 52db̂S u61

sw61.D . ~B10!

Again, as in all odd orders, we need to satisfy certain
thogonality conditions. At this stage we just assume t
these conditions are approximately satisfied and pre
seventh-order correction as

S u7

w7
D 5db̂S u71

w71
D . ~B11!

First contribution from the nonlinear terms of Eqs.~B2! to
the asymptotic expansion appears in the eighth order,
2-9
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M̂RS u8

w8
D 5d b̈̈ S u71

sw71
D 1db2S usb22uswsb

2

3swsb227wswsb
2 D 2db2S 1

3 ~us1ws!usb
2 1~ 2

3 us14ws!usbwsb

~ 1
3 us12ws!usb

2 14ususbwsb
D . ~B12!

Solution due to the terms withdb2 factor can be calculated analytically. This allows us to present the eighth-order terms
form:

S u8

w8
D 5d b̈̈ S u81

w81
D 1

1

2
db2S usbb

wsbb
D . ~B13!

Proceeding to the ninth order we obtain

M̂ I S u9

w9
D 52db (V)S u81

sw81
D 2dbdḃS usbb

swsbb
D 2dbdḃS 2

3
ususbw512u51

4ususbw5123sw51

D
2dbdḃS ~ 2

9 us2
2
3 ws!usbu511~4ws2

2
3 us!u51wsb

18wswsbw511
2
3 ususbu51

D . ~B14!
t-

ear
Now we use acombinedsolvability condition for all odd
orders we considered@which requires that the sum of righ
hand-side parts of the systems~B6!,~B10!,~B14! should be
orthogonal to the neutral mode ofM̂ I operator (us,3ws)]
obtaining

D2db (V)1D1db̂1D0dḃ12gdbdḃ50, ~B15!

where

D252E
2`

1`

~u0u8113sw0w81! dx, ~B16!

D152E
2`

1`

~u0u6113sw0w61! dx,
d

s
s,
,

.

s.

05661
D052E
2`

1`

~u0u0b13sw0w0b! dx,

g5
1

2

]2Q

]b2 U
b0

.

It may be shown that all coefficients~B16! are identically
equal to the corresponding coefficients~12! and ~13!. After
one integration of Eq.~B15! in z and putting the integration
constant to zero we obtain the model describing nonlin
soliton dynamics in the vicinity of the stability threshold:

D2d b̈̈ 1D1db̈1D0db1gdb250. ~B17!

This equation is identical to the model~18!.
v.
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